
Data-Driven Harmonies: Exploring Artist
Clusters in LastFM’s Dataset

James Harvey

Abstract - This paper explores the application of clustering al-
gorithms to the HetRec LastFM dataset to identify and ana-
lyze similarities among musical artists. Utilizing a combina-
tion of data preprocessing techniques and advanced clustering
methods, such as K-Means and DBSCAN, the study navigates
through the complexities of user data, artist metadata, and so-
cial network information inherent in the dataset.

Introduction
The music streaming industry represents a revolutionary
shift in how music is consumed and distributed. This
industry has rapidly evolved into a primary source of music
consumption, offering vast libraries of songs and albums
accessible anytime and anywhere. Dominated by key players
like Spotify, Apple Music, and Amazon Music, making
up 50.7% of the market share (1), music streaming has
revolutionized how audiences engage with music, altered
marketing strategies, and the overall discovery process
of music. With a global revenue of $17.5 billion (2),
streaming continues to redefine the boundaries of accessi-
bility, personalisation, and global reach in the music industry.

In the digital age, where the volume of music available
online is vast and continually growing, the ability to accu-
rately recommend music has become crucial. On Spotify,
for instance, over one-third of all new artist discoveries
happen through "Made for You" recommendation sessions
(3). Accurate music recommendation serves several essential
purposes:

• Personalized User Experience: With an overwhelming
array of choices, listeners can easily find themselves lost in
a sea of musical options. Accurate recommendations help
navigate this abundance, guiding users to tracks and artists
that align with their tastes and preferences. This person-
alization fosters a more engaging and satisfying listening
experience, increasing user retention and satisfaction.

• Commercial Success and Sustainability: For music plat-
forms and streaming services, the ability to deliver accurate
recommendations drives user engagement and subscription
retention, critical factors in commercial success. By keep-
ing users engaged and subscribed, these platforms ensure
a steady revenue stream, which is crucial for their sustain-
ability and, by extension, for the artists who rely on them
for income.

• Industry Analytics and Strategic Development: The so-
phisticated algorithms behind accurate music recommen-
dation systems generate a wealth of data reflecting user

preferences and listening trends. Record labels, artists, and
marketers can leverage these insights to tailor their cre-
ative and promotional strategies, aligning their offerings
more closely with listener trends and demands. This data-
driven approach enables the industry to adapt dynamically
to changing tastes, ensuring that productions and market-
ing efforts resonate more effectively with target audiences.

Accurate music recommendation is now fundamental in the
modern music ecosystem. It bridges the gap between the vast
array of available music and the individual listener, supports
the discovery and promotion of artists, drives the commercial
success of music platforms, and provides valuable industry
insights. As such, research and development in this area are
both technologically and economically significant.

Background
Last.fm is a music streaming and recommendation service
that has pioneered the online music industry. Founded in
2002 (4), it gained popularity for its unique approach to
music streaming, combining social networking features with
personalized music recommendations. The platform uses
"scrobbling" to track users’ listening habits across various
music services and devices, creating detailed profiles of their
musical tastes. These profiles are then used to recommend
new music, generate custom radio stations, and connect users
with similar music interests. Last.fm also offers a wealth
of information about artists, albums, and tracks, making it
a valuable resource for music discovery and exploration.
Last.fm’s rich dataset of user preferences and behaviours has
been instrumental in the research and development of recom-
mendation algorithms, exemplifying the impact of data ana-
lytics in shaping the digital music experience.

The Data
A. HetRec2011 Last.fm Dataset
The dataset is a summarized, sanitized subset of the original
released at The 2nd International Workshop on Information
Heterogeneity and Fusion in Recommender Systems (5). The
HetRec LastFM dataset is a rich collection of music-related
data compiled from the LastFM website. This dataset is par-
ticularly valuable for research in music recommendation sys-
tems and social network analysis. It contains diverse infor-
mation, including detailed user profiles, artist biographies,
and extensive records of user listening habits. Addition-
ally, it features social networking data, such as user connec-
tions, and user-generated content like tags assigned to artists
and tracks. This multifaceted dataset allows researchers and

developers to explore and model complex interactions be-
tween users and their musical preferences. It provides a com-
prehensive framework for understanding music consumption
patterns and enhancing personalized music recommendation
technologies.

Hypothesis
Given the importance music recommendation has within the
music industry we draw the following hypothesis:

1. The use of social tagging on music streaming platforms
such as Last.fm can be used to identify similar artists and
provide convincing recommendations.

2. Clustering techniques can be employed to group together
musically similar artists.

Software and Techniques
A. t-SNE
t-Distributed Stochastic Neighbor Embedding (t-SNE) is
a powerful machine learning algorithm for dimensionality
reduction and visualization of complex, high-dimensional
datasets (6). Renowned for its effectiveness in revealing
the intrinsic structure and patterns within data, t-SNE
operates by converting similarities between data points
into joint probabilities and then minimizing the divergence
between these probabilities in both the high-dimensional
and low-dimensional spaces. The t-SNE algorithm effec-
tively reduces complex, high-dimensional data into a more
manageable two or three-dimensional space, facilitating
clearer visualization and interpretation of the underlying
patterns and relationships within the data (7). t-SNE has
become a staple in exploratory data analysis, especially in
fields like bioinformatics, image processing, and natural
language processing, where understanding the underlying
relationships within complex datasets is crucial.

B. Python
Renowned for its versatility and the extensive support of
libraries for statistical analysis, machine learning, and data
visualization. Its syntax is clear and intuitive, making it
an accessible yet powerful tool for analysts and developers
to perform complex data manipulation and analytical tasks
efficiently.

C. Pandas
A versatile and efficient data manipulation tool within
Python. Pandas provides robust capabilities for data clean-
ing, transformation, and analysis.

D. SciKit-Learn
SciKit-Learn is an open-source machine learning library
for Python. It is known for its simplicity and accessibility,
providing a wide range of supervised and unsupervised
learning algorithms.

E. Microsoft Excel
Microsoft Excel provides a user-friendly interface combined
with powerful analytical capabilities. Its wide array of
functions, from basic data organization to complex statistical
analysis, enables users to perform in-depth data exploration
and gain actionable insights.

F. Last.fm API
The Last.fm API provides access to the extensive music data
collected by Last.fm. This includes information about songs,
artists, albums, and user-generated data like tags, playlists,
and user profiles (8).

Data Cleaning
The HetRec2011 Last.fm Dataset had already undergone san-
tisation. The sanitisation of the HetRec2011 dataset includes:

(a) Artist name misspelling correction and standardization

(b) Reassignment of artists referenced with two or more
artist id’s

(c) Removal of artists listed as ’unknown’ or through their
website addresses

Two dataset files were selected and preprocessed for use in
this work:

1. user_taggedartists.csv A listing of 186,749 artist tag as-
signments by user. It contains the tag assignments of
artists provided by each particular user.

2. user_scrobbles.csv containing 92,792 scrobble counts for
17,493 artists generated by 1,892 users.

The main benefit of using tags was that users already defined
the features. The drawback of tags was that due to their
user-defined nature, many weren’t used by more than one
user. For example, tag #4541 was "if this was a pokemon i
would catch it", which was not likely to be commonly used
enough to use as a prominent feature.

To deal with this problem a python script was used to
group all of the used tags and then only use the top 100 tags
amongst all users. The most used tag "rock" had 7,503 tags,
while 100th most used tag "sad" had 315 tags. The entries
that used other tags were removed from the dataset. After
this operation 63% of user-artist-tag relations were preserved.

The next step was to ensure that there was only one
entry for each user-artist relationship whilst preserving the
tags associated with a user-artist relationship. This was done
using one-hot encoding. A Python script was created to
increase the dimensionality of the data, having a field for
each of the top 100 tags. If a user-artist relationship was
associated with a tag, the respective field was indicated with
a one. If a tag was not associated with a user-artist pair, then

2 James Harvey | Data-Driven Harmonies

the field had a value of zero.

Once transformed, the dataset was grouped by artist,
and the average of the tag’s one hot value was taken. This
resulted in a dataset where each artist has a value between
zero and one for each of the top 100 tags describing that artist.

Item profiles are defined in terms of the top 100 tags.
Depending on the artist’s popularity, some artists had much
more plays and tags than others. In order to remove bias, the
items are normalized by dividing each artist’s total tag count
for a given tag by the number of unique users who tagged
that artist.

In effect, this was saying, "Of all users who tagged
artist X, how many included at least tag Y?" For instance,
66% of users who tagged Radiohead tagged them with
"Rock".

Some artists had only been tagged by a single user so
to gain consistent and reliable results the artists were ordered
from most tagged to least tagged. Initial investigation into
whether or not this information can be used to determine
similar artist involved using the cosine similarity between
two artists.

Data Analysis
Cosine similarity is a metric used to measure the similarity
of vectors, regardless of size (9). Mathematically, it calcu-
lates the cosine of the angle between two vectors projected
in a multi-dimensional space. A python script was written to
create a vector representing the top 100 tags associated with
an artist. The cosine between two vectors can then be cal-
culated to measure the similarity. To test this metric, artists

Fig. 1. Cosine Similarity

known to be similar were used. For example, Madonna and
Kylie Minogue are similar (10), yielding a cosine similar-
ity of 95.1%. In contrast, Madonna and Radiohead yielded
a much lower similarity of 16.1%. A similarity matrix was
created in order to examine all of the relationships. The simi-
larity matrix calculates the cosine similarity between all pos-
sible artists and stores it in a matrix. This was again per-
formed using a Python script. The result was then exported
as a .csv file and examined within Microsoft Excel. A part
of the similarity matrix can be seen in fig 2. Artists that are
given a higher cosine similarity can be seen in green, and

those that are different from each other in red. The results
from the similarity matrix were promising upon visual in-
spection as artists know to be similar were assigned a green
cell and artists know to be unalike were assigned a red cell.

Fig. 2. A cosine similarity matrix for the top 25 artists.

As the information extracted from the dataset gave clear
indication that the similarity between artists can be found
from tags alone. It made sense to investigate the data further
to see if it can be clustered such that all artists belonging to
the same cluster are similar to each other.

To test this the t-SNE algorithm was used to visualise
the data in two-dimensions. This was performed for the top
250, 500, 1000, 2000 artists. The results can be seen below
in fig 3.

(a) Top 250 Artists (b) Top 500 Artists

(c) Top 1000 Artists (d) Top 2000 Artists

Fig. 3. Using the t-SNE algorithm to visualise the tag data in two-dimensions for a
varying number of artists

The results from the t-SNE transformation were promising,
as clear clusters could be identified for all numbers of top
artists. Therefore, it was viable to investigate clustering

James Harvey | Data-Driven Harmonies 3

further. Where fewer artists were used, larger, more sparse
clusters were present. As the number of artists increases,
smaller dense clusters become present. As clusters have
been visually identified, different clustering algorithms can
be chosen to analyse the data.

The Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) is an algorithm that groups points
that are closely packed together while marking outliers,
which lie alone in low-density regions (11). It is charac-
terized by two main parameters: the minimum number of
points required to form a cluster (MinPts) and the radius of
the neighborhood around each point (ε). An advantage of
using the DBSCAN algorithm is that the number of clusters
is not a parameter. This is practical for the project as it is
unknown how many groups of artists have a similar music
profile. Other advantages of the DBSCAN algorithm include
the agility to find unusually shaped clusters and the noise
tolerance.

However, setting values for ε and MinPts is not intu-
itive, and the algorithm can be slow to execute, especially in
higher dimensions.

t-SNE based clustering:
One approach was to cluster the data after the t-SNE
transformation. As clusters can be visually identified, it
made sense to perform this algorithm. The chosen clustering
algorithm was the DBSCAN algorithm for the reasons
mentioned previously. The algorithm meant the values for
ε and MinPts had to be tuned accordingly, but the initial
results were promising, as seen in figure 4. The main clusters
are represented as coloured circles, whilst crosses represent
the points identified as noise. This algorithm has identified
all main clusters; however, there was a lot of noise, with 31
points not belonging to any cluster.

Fig. 4. Clustering into groups of similar artists using DBSCAN after t-SNE transfor-
mation

However, this clustering method is impractical as it becomes
difficult to interpret how the algorithm clusters the data as
the t-SNE transformation is complicated. Another issue with
this method is assigning new points to a cluster. This is
because the t-SNE transformation is unknown and changes
when different points are considered. The t-SNE algorithm is
better for identifying whether or not clustering is practical in
the first place. t-SNE also incorporates a random component
in its initialisation phase. This can lead to different results
every time t-SNE is run, even on the same data. A random
seed can be set to remove the random element; however, this
is not good practice.

Fig. 5. DBSCAN for top 1000 artists (ε=0.65, MinPts=6)

DBSCAN:
After exploring clustering techniques on the t-SNE trans-
formed data, the DBSCAN algorithm was applied to the
original dataset. As the dataset has high dimensionality,
the running time of this algorithm was slow. However,
the algorithm was applied to the top 250, 500, 1000, and
2000 artists. The parameters ε and MinPts were updated
accordingly for each dataset to reduce the number of data
points identified as noise. The parameters were also adjusted
to change the number of identified clusters.

After adjusting the parameters, the cluster assignments
were visualised using the t-SNE algorithm described previ-
ously. An example clustering can be seen in figure 5. The
paramters for this clustering are ε= 0.65 and MinPts=6. The
clusters identified with these parameters closely resemble
the clusters that can be visually identified from the t-SNE
transformation. However, many of the points are identified
as noise. This is an issue as all artists identified as noise are
not associated with similar artists.

Unfortunately, after testing many different values for ε
and MinPts, all clustering had noise unless the parameters
were adjusted such that there were only two clusters, which

4 James Harvey | Data-Driven Harmonies

is unlikely to be an appropriate clustering. An artist falling
into one of only two categories is illogical.

Initial investigations into the clusters showed promising
results. This was performed by manually analysising
the clusters to see that artists of a genre appeared in
the same cluster. In figure 5 we can see the results of
the DBSCAN algorithm on the top 1000 artists with
ε=0.65, MinPts=6. The results contain a lot of noise,
however upon analysing a cluster we obtain the artists:

• Wolfgang Amadeus Mozart

• Johann Sebastian Bach

• Ludwig van Beethoven

• Georg Friedrich Händel

• Antonio Vivaldi

• Ludovico Einaudi

• Andrea Bocelli

• IL Divo

• Gabriel Fauré

• Johannes Brahms

This is a very successful cluster as the artists listed are
renowned classical composers and, hence, are deemed
similar to one another.

k-Means:
K-means clustering is an unsupervised machine learning
algorithm that groups data into k-distinct clusters based on
similar characteristics. The algorithm works as follows:

• Initialisation: Choose k initial cluster centres (cen-
troids) randomly or based on some heuristic.

• Assignment: Assign each data point to the nearest
cluster centre based on distance (usually Euclidean dis-
tance).

• Update: Recalculate the centroids as the mean of all
points assigned to each cluster.

• Iteration: Repeat the assignment and update steps un-
til the centroids no longer change significantly, indicat-
ing that the clusters have stabilised.

The k-means algorithm was performed on the original data
using the Euclidean dis- tance metric for the top 250, 500,
1000, and 2000 artists. An issue with k-means clustering is
that the number of clusters is not always apparent, like in
this case. Therefore multiple values of K were used to find a
suitable clustering. Another drawback of the k-means algo-
rithm is that the final clustering depends largely on the initial
choice of centers. Therefore it was also important to consider
different random seeds when performing the algorithm. An
example clustering showing the results from a k-means algo-
rithm with K=11 on the top 1000 artists after transformation
using the t-SNE algorithm can be seen in figure 6.

Results
A successful clustering is one where the size of the clusters
is small, and the accuracy within clusters is high. It is easier
to achieve a higher accuracy with larger clusters as it is more

Fig. 6. k-means clustering on the top 1000 artist (K=11)

likely that an artist is within this cluster. It is more practical
for a cluster to be small, as recommending a large number
of similar artists does not solve the problem. The two
metrics used to evaluate the clusterings in this project are the
weighted average cosine similarity and the artist similarity
based on the last.fm website. The cosine similarity validates
the clustering against the original dataset whereas using
the similar artists provided by last.fm provides validation
independent of the original dataset, both providing valuable
insights.

Cosine Similarity
The Cosine similarity is an appropriate metric to use to
score the success of a clustering. The exact metric used to
score a clustering was the weighted average of the average
cosine similarity within a cluster. Mathematically, the
average cosine similarity was calculated for each cluster.
The final score was the sum of the averages multiplied by
their respective size divided by the total number of artists.
An example can be seen below for the DBSCAN algorithm
applied to the original data as seen in figure ??.

Cluster Colour Average Cosine Similarity Cluster Size
Cyan 0.74 13
Navy 0.54 29
Green 0.61 57
Purple 0.45 87
Yellow 0.46 33
Outliers 0.14 31

Table 1. Cosine similarity for the clustering in figure 3

From the average cosine similarity found from each of the
clusters from the clustering we can calculate the weighted
average for the entire clustering. The outliers are not
included in this calculation.

James Harvey | Data-Driven Harmonies 5

0.74∗13+0.54∗29+0.61∗57+0.45∗87+0.46∗33
13+29+57+87+33 = 0.54

Results for the cosine similarity for the different algo-
rithms on a different number of artists can be seen in table
2. In the case of the DBSCAN algorithm, the score stated
is the best for given parameters. For k-means, the accuracy
is an average for the best k over multiple random seeds.
Unfortunately, as the cosine similarity is a computationally
complex operation, scoring clusters for the top 2000 artists
was not feasible.

No. Artists t-SNE DBSCAN k-Means
250 0.541 0.643 0.453
500 0.532 0.612 0.462

1000 0.490 0.603 0.402

Table 2. Cosine similarities achieved by different clustering techniques

The results show that the clusters found using DBSCAN on
the original data yield stronger artist similarity than when the
algorithm is performed on the t-SNE transformed data. The
results suggest that the clusters identified by the DBSCAN
algorithm yield a more substantial artist similarity than the
ones found by the k-means algorithm. However, as the
outliers are not included in the scoring for DBSCAN, it isn’t
easy to compare the two techniques.

This metric gives us a score on whether or not the sim-
ilarities in the dataset are are represented within clusters
however it is important to see if the results are representative
beyond the dataset. Therefore a metric that is independent of
the dataset should also be used.

Last.fm Similarity
A feature of the Last.fm website is the ability to view similar
artists. Last.fm finds similar artists using a process called
collaborative filtering, which is based on the listening habits
of its user community. The algorithm analyses the songs and
artists users listen to and identifies patterns and relationships
among them. Using the Last.fm API and Python, a new
dataset was formed containing all artists from the original
dataset as well as three of the most similar artists as given
by Last.fm. This new dataset provides a validation to assess
how good the clusterings are.

The validation works as follow:

• Check if the artist is contained within the dataset.

• If the similar artist is in the dataset then score 1 if it is in
the same cluster as the original artist and 0 otherwise.

• Repeat for all artist and their respective similar artists
and calculate the empirical average.

This metric can then be used to compare different clusterings
to see if the clusters contain similar artists.

After this metric had been established, different values
of k for k-means clusterings could be evaluated to see which
value was the most appropriate. Using a Python script, the
k-means clustering algorithm was performed on the same
data for values of k from 1 to 25. The accuracies were then
calculated as described previously and plotted on a graph.
An example can be seen in figure 7.

Fig. 7. K-Means accuracy for different numbers of clusters

For k = 1 the accuracy is 100%. This is because all
artists belong to the same cluster; therefore, so do all of
their similar artists. We can see that the highest non-trivial
accuracies are achieved for K = 4,5,6. The clusterings for
these values of K after a t-SNE transformation can be seen
in figure 8. The algorithm has identified the clusters that
can be visually seen from the t-SNE transformation. As
each clustering has a similar accuracy of 93% we can say
that K=6 is the best clustering as it breaks the artists into
smaller subsets of similar artists and still maintains the same
accuracy as K = 4,5.

(a) K=4 (b) k=5 (c) k=6
Fig. 8. k-means clustering on the same data with different values of k

After performing this evaluation for a different number of
top artists the best values of k were found along with their
respective accuracies.

• Top 250: K=6, accuracy=0.92

• Top 500: K=13, accuracy=0.85 (See figure 9)

• Top 1000: K=11, accuracy=0.85

• Top 2000: K=8, accuracy=0.79

This metric was also used to evaluate the clusters obtained
using the DBSCAN algorithm. The accuracies 0.90, 0.842,
0.853, 0.825 were achieved for the top 250, 500, 1000, 2000
artists respectively. The results suggest the majority of the
time the clusters group together similar artists.

6 James Harvey | Data-Driven Harmonies

The Last.fm similarity metric does not consider artists
that are classified as noise. Therefore, the k-means algorithm
may be a more suitable algorithm for this task. This is be-
cause both algorithms score a similar accuracy; however, the
k-means cluster all points, whereas the DBSCAN algorithm
does not necessarily.

Fig. 9. k-means clustering for the top 500 artists (K=13)

Conclusions
It can be concluded that, as hypothesised, social tagging
music artists can identify similar artists using methods
such as cosine similarity and a variation of clustering tech-
niques. Once identified, similar artists can be recommended.
Although a model that fits all data was not achieved, the tech-
niques and approaches outlined in this paper have defined
methods to tune parameters and find clusters successfully.

Limitations
One of the key limitations of social tagging is the coverage.
It is common that only the most popular items are described
frequently by users, creating a compact description. On the
other hand, long-tail items usually do not have enough tags
to characterise them; This complicates the recommendation
process (12).

As the number of artists considered for the clustering
algorithm increases, the number of items in the largest
cluster increases disproportionally. This is especially
the case for the DBSCAN algorithm. This could be the
case because the data becomes more dense; hence, more
links are created between items, and larger clusters are found.

Extensions
As mentioned in the limitations section as the number of
artists increase the largest cluster increases disproportionally.
This could be because it is capturing a parent genre, whereas
we wish to find subgenres. This could be investigated by
using clustering techniques on each of the clusters, this could

involve nested clustering (13).

Another area of interest would be to test the techniques
and approaches described in the paper on a more extensive
dataset by pulling more data using the Last.fm API. This
would allow us to see if the patterns hold when considering
a much larger number of artists.

Bibliography
1. Music streaming services worldwide - statistics facts. https://www.statista.com/

statistics/653926/music-streaming-service-subscriber-share/. Ac-
cessed: 08/01/24.

2. Fabio Duarte. Music streaming services stats (2023). https://explodingtopics.

com/blog/music-streaming-stats, 2023. Accessed: [Insert Access Date Here].
3. Made by you. https://found.byspotify.com/made-by-you. Accessed:

08/01/24.
4. Last.fm. https://www.last.fm/, . Accessed: 04/01/2024.
5. Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information hetero-

geneity and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM
conference on Recommender systems, RecSys 2011, New York, NY, USA, 2011. ACM.

6. Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008.

7. George C. Linderman and Stefan Steinerberger. Clustering with t-sne, provably. CoRR,
abs/1706.02582, 2017.

8. Last.fm api. https://www.last.fm/api, . Accessed: [insert date of access here].
9. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining, chapter 8,

page 500. Addison-Wesley, 2005. ISBN 0-321-32136-7.
10. Artists similar to madonna. https://www.last.fm/music/Madonna/+similar.

Accessed: 09/01/24.
11. Adil Abdu Bushra and Gangman Yi. Comparative analysis review of pioneering dbscan and

successive density-based clustering algorithms. IEEE Access, 9:87918–87935, 2021. doi:
10.1109/ACCESS.2021.3089036.

12. O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.
13. Xutao Li, Yunming Ye, Mark Junjie Li, and Michael K. Ng. On cluster tree for nested and

multi-density data clustering. Pattern Recognition, 43(9):3130–3143, 2010. ISSN 0031-
3203. doi: https://doi.org/10.1016/j.patcog.2010.03.020.

James Harvey | Data-Driven Harmonies 7

https://www.statista.com/statistics/653926/music-streaming-service-subscriber-share/
https://www.statista.com/statistics/653926/music-streaming-service-subscriber-share/
https://explodingtopics.com/blog/music-streaming-stats
https://explodingtopics.com/blog/music-streaming-stats
https://found.byspotify.com/made-by-you
https://www.last.fm/
https://www.last.fm/api
https://www.last.fm/music/Madonna/+similar

