
Final Report

Jacob Coates, James Harvey, Jenny Hutchins, Mary
Kassayova, Joshua Manchester, Marin Srithar, Harry
Varanauskas

Department of Computer Science
University of Warwick

2 February 2024

Final Report I

Contents

1 Introduction 1

2 System Overview 1

2.1 Accounts . 1

2.2 Relationships (Mentor-Mentee) . 2

2.3 Meetings . 3

2.4 Workshops . 4

2.5 Plan of Action . 4

2.6 Messages . 5

2.7 Application Feedback . 6

2.8 Administrator Functionality . 6

3 Requirements Modification 7

3.1 Modified Requirements . 7

3.2 Dropped Requirements . 8

4 Development Discussion 9

4.1 Development Tools . 9

4.1.1 Containerisation with Docker 9

4.1.2 Github . 9

4.1.3 React TypeScript . 10

4.1.4 Tailwind CSS . 11

4.1.5 Material UI . 11

4.2 Development Progression . 12

4.2.1 Factory Design Pattern . 12

Final Report II

4.2.2 REST API . 13

4.2.3 Authentication . 13

4.2.4 Plan of Action . 15

4.2.5 Meetings . 16

4.2.6 Workshops . 18

4.2.7 Matching . 19

4.2.8 Admin . 19

4.2.9 Database Implementation 20

4.2.10 UI Design . 21

4.2.11 Communication with the API 21

5 Product Evaluation 22

5.1 Testing and Validation . 22

5.2 User Interface Evaluation . 25

5.2.1 Visibility of System Status 25

5.2.2 Match between system and real-world 26

5.2.3 User control and freedom 27

5.2.4 Consistency and standards 28

5.2.5 Error prevention . 29

5.2.6 Recognition rather than recall 29

5.2.7 Flexibility and efficiency of use 30

5.2.8 Aesthetic and minimalist design 31

5.2.9 Help and Documentation 32

5.3 Improvements and Extra Features 32

Final Report III

6 Development Process Evaluation 33

6.1 Methodology . 33

6.2 Planning and Management . 34

6.3 Communication . 34

6.4 Conclusion . 35

Final Report IV

List of Figures

1 Login page. 2

2 Registration page. 2

3 Mentor selection page. 3

4 Example of meetings in the system. 3

5 Plan of Action user interface. 5

6 Admin Dashboard . 6

7 Backend file structure . 12

8 Component file structure . 12

9 Token decode example from jwt.io [1] 15

10 Entity-Relation diagram. 21

11 User Generator command line interface 23

12 Github actions automatically running tests 24

13 Pytest test log . 24

14 Example of visibility of system status. 25

15 Gear symbol for settings . 26

16 Gear symbol for settings . 26

17 An example of a commonly used phrase 27

18 Pop up modal . 27

19 Profile picture can open the user menu 29

20 Inputs labels and default date values on scheduling form 30

21 Tooltip helps with recognition . 30

22 Example of well spaced component 31

23 Feedback box is only displayed for completed meeting. 31

Final Report 1

1 Introduction

Deutsche Bank has asked us to provide a system to facilitate its mentoring
programme. The system is required to match suitable mentors with mentees
according to prescribed criteria, and enable users to schedule meetings and
workshops. To be successful, the system must be clear and intuitive for busy
professionals to use with minimal training, while incorporating the necessary
functionality to match mentors and mentees in the most optimal way. This doc-
ument describes the website we have created to meet Deutsche Bankâs criteria,
the development process and our evaluation of the product.

2 System Overview

2.1 Accounts

Every user of the system must create a new account before they can have
access. Creating an account requires the users first name, last name, email
address and password. The name of the user is needed for users identifying
others within the system, whereas the email address and password can be used
to help the system find the correct user when logging in. The email address
also provides a unique identification for an account, since no two accounts can
have the same email address. Furthermore, the password helps protect the
account from people who are not the user and keeps it secure, thereby main-
taining confidentiality as specifically required by the client. Once the account
is created, users can then separately specify their role as mentee, mentor, or
both, as required by the clientâs specification. The screenshot below shows the
login page.

Final Report 2

Figure 1: Login page. Figure 2: Registration page.

2.2 Relationships (Mentor-Mentee)

Each mentor and mentee has a relationship with a counterpart (mentors have
mentees as counterparts and mentees have mentors). The system uses a match-
ing algorithm to present a list of mentors in order of compatibility for the
logged-in mentee. The ordering of mentors meets the clientsâ requirements by
taking into account two key factors: (1) mentorsâ feedback scores, weighted
across each scoring category according to the skill preferences of the logged-in
mentee (2) overlap between mentorsâ specialist topics and the logged-in men-
teeâs selected topics. In addition, to comply with client requirements, the list
of mentors must all be from a different business area to the mentee. The res-
ults of the matching algorithm are unique to each mentee and are displayed
only to that mentee. Once the mentee chooses their mentor, a relationship is
automatically created between the two counterparts. At any time during the
relationship, mentees can rate each of their mentorâs skills on a scale of 1 to
10. These ratings are averaged with all other mentor feedback scores received.
Average feedback scores are used in the matching algorithm, so this fulfils the
clientâs requirement of using mentee feedback to refine the suggestion process.

Final Report 3

Figure 3: Mentor selection page.

Figure 4: Example of meetings in the system.

2.3 Meetings

In accordance with the Rules of Mentoring set by the client, only mentees can
request meetings in the system. Mentees request meetings with mentors via a
meeting request message. This request includes the start time, end time, title
and description of the meeting. In the system, the meeting is assigned a status.
Before the mentor responds to the request, the status is pending; if the mentor
accepts, the status becomes going-ahead; and if the mentor rejects, the status

Final Report 4

becomes cancelled. If a mentor rejects a meeting request, the mentee will be
able to request an alternative meeting time until the mentor accepts (this is con-
sistent with the clientâs requirement for mentors to give up time to mentees).
The actual meeting takes place in external software but it is registered in the
system as running once the start time has been reached. Within 30 minutes of
the end time, the mentor must register the meeting as completed otherwise the
meeting will be assigned the status missed. When the mentor has completed
a meeting, they can send feedback to the mentee relating to the meeting. The
following screenshot shows the record of two meetings with a single mentor;
the status for the first is completed (with feedback provided) and the second is
missed.

2.4 Workshops

The client requirements specify that the system must allow for group sessions
in the form of workshops. Workshops are similar to meetings; however, they
include a group of mentees instead of just one mentee and do not require
mentees to have a relationship with the mentor of the workshop. Each work-
shop contains a topic, title, description, start time, end time and location. When
a threshold number of mentees has shown an interest in a particular topic
(based on topics selected when registering), a workshop-creation invite will
automatically be sent to a random mentor who specialises in that topic. To
accommodate topics with a smaller level of interest, workshop demand auto-
matically increases in small increments over time provided that at least one
mentee has shown an interest. This ensures that, eventually, workshops will
always be scheduled so no one has to wait indefinitely for a workshop. If a
mentor rejects a workshop invitation, then another mentor is requested to take
over the workshop. Once the workshop has taken place, the workshop demand
value for the relevant topic is reset to zero.

2.5 Plan of Action

It is a client requirement for every mentor/mentee relationship to have a Plan
of Action which can be tracked through the system and viewed by both parties.

Final Report 5

Each Plan of Action stores the menteeâs milestones for the relationship. At
the start of the relationship, the Plan of Action is empty on the home screen.
Mentees can add milestones to their Plan of Action at any time. Once the user
is satisfied that they have achieved their milestone, they can mark it as com-
pleted. A user can also revert a milestone back to incomplete. The screenshot
below shows a sample plan of action with three completed and six uncom-
pleted milestones. There is no limit on the number of milestones.

Figure 5: Plan of Action user interface.

2.6 Messages

To meet our requirement that mentor and mentee pairings should be able to
communicate, messages can be sent between users on the system. They can be
accessed by selecting the account button on the top left corner of any page once
logged in. Each message will contain the content itself along with who sent
the message and the time the message was sent. The content of these messages
can take one of four formats: an invitation to a workshop, an invitation to a
meeting, a text message and a report message. Once a mentee has requested a
meeting the respective mentor will receive a message containing the informa-
tion about the meeting. If there is sufficient demand for a topic then a mentor
in that field will receive a message.

Final Report 6

2.7 Application Feedback

The client requirements state that users should be able to submit features and
improvements for the website. To meet this requirement, the system gives both
mentors and mentees access to a page where they can submit their feedback on
the website. This feedback can include features they would like to see in future
updates as well as bugs in the current websites that need to be fixed. The user
can also mention any skill, topics and business areas currently not included in
the system that they think should be included. Feedback be viewed and acted
upon by the system administrator.

2.8 Administrator Functionality

If a user signs in with administrator credentials, they will be directed to a page
that has functionality exclusive to administrators. This functionality includes
adding topics, skills and business areas stored in the system. All system feed-
back, including feature suggestions from users, can be accessed by an adminis-
trator, who can then contact the appropriate people to implement the potential
improvements.

Figure 6: Admin Dashboard

Final Report 7

3 Requirements Modification

3.1 Modified Requirements

C1: Confidential information must be protected.
Initially, the aim of this requirement was to encrypt all user data, including
names and e-mail addresses. Since names are displayed on usersâ public pro-
files, we have decided to only encrypt passwords in the backend. This still
ensures data protection.

C4: Mentoring rules must be followed.
The system is designed in a way that inherently follows the rules of mentor-
ing. Only mentees are able to request meetings, which they can do at any time,
and mentors must choose whether or not to accept the request. The matching
algorithm ensures that no mentors from the same business area or with no
significant overlap in topics are recommended to the mentee.

C8: Mentors should be able to provide mentees with feedback on their de-
velopment.
D8: Mentors must be able to select one of their assigned mentees and
provide feedback. This page should include separate text boxes for areas
that need improving and things that went well. Mentees should be notified
when they receive feedback.
Whilst the customer facing requirement remains unchanged, the developer
facing requirement was changed to allow for a better workflow for users. In-
stead of a mentor providing feedback to the mentor at arbitrary points, feed-
back is given after every meeting. This implementation is more structured and
gives mentors regular prompts to provide feedback. Additionally, meetings
are marked as missed if no feedback is provided, giving extra incentive for
mentors to give feedback.

C18: Users could be able to report any misconduct of other users on the
website.

Final Report 8

In the current version of the system, users are unable to report misconduct.
However, this feature is also fully implemented on the backend and can there-
fore be easily added in the future.

3.2 Dropped Requirements

C5: A warning should be generated if a mentoring rule is broken.
This was dropped because it is impossible to break the mentoring rules within
the system: the implementation of the system does not allow users to break
any of the mentoring rules.

C9: Mentors should be able to arrange workshops through the application.
Since this system is a prototype, we chose to prioritise other features. However,
this feature is fully implemented on the backend, so the groundwork is there
to implement it in the future.

C13: Mentors should be prompted to create group sessions or workshops in
a particular field when there is a large enough demand for tutoring in that
skill/field.
Similarly to C9, the system is just a prototype so we did not implement this
feature and instead focused on other parts of the system. Nevertheless, this
feature is implemented on the backend and could be easily implemented in a
future build.

C25: The website should be usable on mobile devices.
Whilst the UI is functional on a mobile device, it is neither responsive nor user
friendly. The desktop version of our app was our main priority and we decided
that a mobile version fell outside the scope of the project. Thanks to using the
Tailwind framework, this feature can be easily implemented in the future.

Final Report 9

4 Development Discussion

4.1 Development Tools

4.1.1 Containerisation with Docker

Docker is virtualisation software that allows developers to run isolated contain-
ers on their systems. Initially, we did not plan to use containers as we deemed
the project simple enough to set up on each team memberâs personal com-
puter. However, when it came to setting up databases and configuring devel-
opment environments for all members of the team, we encountered difficulties
due to the wide range of operating systems we were developing on. Therefore,
we decided to dockerize[2] the project to allow for easy cross-platform develop-
ment. This involved creating individual containers for the backend, front-end
and database. We used docker compose to automatically launch all contain-
ers at once. For development purposes, we used docker volumes to mount our
code to the container. This allowed for hot-reloading and removed the need for
restarting the container every time a change was made to the code, speeding
up development. Using docker made setting up the project for all team mem-
bers easy and meant more time could be spent developing instead of setting
things up. Whilst we did not end up deploying the application, running the
website in containers should theoretically make this process simpler.

4.1.2 Github

The team collaborated on the project using a Git[3] repository hosted on Github[4].
Git is version control software that allows users to create their own branches
of the code-base. Github is a Git repository hosting service which hosts the
repository on the cloud and allows developers to access the code from any-
where. We used Git to manage and merge our code together so that members
of the team did not overwrite each other’s work. However, using Git was not
always a straightforward task due to wide-range of experience in our team. To
tackle this problem, we ensured that developers with prior experience using
Git assisted those with less experience to ensure that changes were committed

Final Report 10

correctly. We occasionally encountered mishaps where code was submitted to
the wrong branch or merge conflicts were not correctly resolved. Fortunately,
due to the powerful functionality of Git, we were able to resolve any issues
that occurred. Planning the subsystems each team member worked on helped
prevent large conflicts when merging workspaces. We utilised Git commit mes-
sages to describe the changes we had made every time we commit code. This
informs other members of the project what changes have been made to the
system. If a branch breaks, Github allows us to revert back to a previous state
where there is a working build available, therefore preventing the team from
starting from the beginning if a serious fault occurs.

4.1.3 React TypeScript

React is a JavaScript library for UI development[5]. We chose to use React
because it is one of the most popular frameworks and some team members
had previous experience in it. Using this framework was a relatively seamless
experience, despite the fact that some users had to spend some time learning
how to use it.
Instead of plain JavaScript, we chose to use TypeScript with this framework
to allow for static type checking as well as a tighter integration with Visual
Studio Code, our IDE of choice. TypeScript[6] is a strict superset of JavaScript
and compiles directly into JS, meaning that we could opt out of static typing
and just use it as plain JavaScript in some situations. Thanks to type checking,
TypeScript made it much easier for us to catch some errors which may have
gone unnoticed until much later in development, or even past the production
stage [7]. TypeScript is able to detect 15% of all JavaScript bugs early.
Using a Javascript library rather than plain HTML and CSS makes it a lot easier
to develop a modern interactive user interface. Compared to other UI libraries,
React is more flexible thanks to its modular structure and its code is easier to
maintain.

Final Report 11

4.1.4 Tailwind CSS

Tailwind is a utility-first CSS framework used for rapid building of custom
user interfaces[8]. It is essentially a collection of CSS classes which can be
composed to build any design we desire. The main choice for this framework
was its relatively shallow learning curve and a high level of customisability
and freedom. The main advantage we have observed while using Tailwind
was that it allowed us to include styling directly in our TypeScript files, which
made the development process faster and more streamlined. However, this also
proved to be a disadvantage, since it made our code more cluttered. When
combined with the Tailwind IntelliSense VSCode extension, which provided
autocomplete functionality for Tailwind classes, this framework was a pleasure
to work with. Tailwind’s detailed and easy-to-read documentation was also
very helpful in the development process.

4.1.5 Material UI

Unlike some other CSS frameworks, Tailwind does not provide any pre-built
components. This is why we have decided to use the Material UI library which
provides a wide range of animated, minimalist, modern-looking components.
We have made use of this library when designing our login and registration
forms, dialog windows as well as smaller components like checkboxes, sliders
and dividers. Using MUI components was a great way to make our UI look
more professional while also saving time. However, customising these com-
ponents to fit in with the rest of the interface was not easy and required a lot
of trial and error.

Final Report 12

4.2 Development Progression

4.2.1 Factory Design Pattern

We decided to use a factory design pattern for our backend. This involved
splitting the backend into multiple folders, each containing a python package
that performed a functional aspect of the application. Here is a diagram to
illustrate:

Figure 7: Backend file structure

Application-wide functionality, such as the database, is placed in the root
folder of the app whilst components such as authentication and messaging
are given their own folders. This is because all components of the program
interact with the database so its utility functions should be globally available
to prevent repeated code. Each component uses a flask blueprint[9] which rep-
resents a collection of views and functions. Here is our auth component as an
example:

Figure 8: Component file structure

Final Report 13

Each file’s purpose is as follows: __init__.py initialises the blueprint for the
component, auth.py contains any functionality code necessary for the routes,
parsers.py contains the necessary models for parsing data, and routes.py is
where the API routes are defined. The URL of API routes takes the form
/api/<blueprint name>/<route>which clearly separates API URLs from fron-
tend URLs and makes it easy for our frontend team to find endpoints. This
structure proved beneficial for multiple reasons. Firstly, we found that splitting
the backend into components made it easier to distribute tasks to members of
the team as it forced us to break the backend down into smaller problems.
Additionally, it meant that each developer worked in an isolated part of the
backend, reducing the likelihood of any file conflicts when commiting code.
Furthermore, it made adding new features to the API easier as all that was
required was creating a new folder and using one of the existing components
as a template. We also found that this design pattern made it easier for team
members working on the frontend to find and understand backend routes due
to the clear structure.

4.2.2 REST API

In our design document, we said we would use Flask-RESTful[10] to develop
our REST API. However, upon developing our API, we realised that Flask-
RESTful lacked any form of API documentation and was fairly outdated. There-
fore, we decided to switch to Flask-RestX[11] which supports Swagger[12] API
documentation (discussed further in our testing section) and is actively de-
veloped. Fortunately, Flask-RestX is a fork of Flask-RESTful so migrating our
existing code was a straightforward task.

4.2.3 Authentication

In order to satisfy our requirement of protecting confidential information, it
was important for us to salt and hash passwords before storing them on the
database. This ensures that, in the case of a data breach, customer passwords
will still be protected. When registering or logging in to an account, the user’s

Final Report 14

login details are sent in a HTTP POST request. Ideally, we would use a HT-
TPS request for the added encryption; however, due to the website being a
prototype, we have not configured this. When the backend receives the user’s
registration details, it randomly generates a 16-character salt. The following
hash computation then takes place:

hash = SHA-256(SHA-256(password) + salt)

The hash and corresponding salt are stored in the database along with the
user’s account information. In order to verify login information, the same cal-
culation is performed using the existing salt. If the generating hash matches
the existing hash, then the user’s password is correct and we grant them au-
thentication.

We decided to use a JWT token authentication system. Whenever a user logs
in with a valid password, we generate a JWT token using a secret key and store
the token in a httpOnly session cookie. Our initial implementation involved
storing the token in local storage and sending the token in the authorisation
header of every API request. However, we found that sending the token every
time was inconvenient for our frontend team and storing the token in local
storage was not secure. Using a httpOnly session cookie meant that the token
was automatically sent in every API request and gave us greater control over
how long the client stores the token. The token contains a payload which in-
cludes accountID, email, userID, role, as well as an expiration time. Here is an
example of a decoded token:

Final Report 15

Figure 9: Token decode example from jwt.io [1]

As the client cannot modify the contents of the JWT token without knowing
the secret key, this provides a secure and convenient way to store information
about the logged in user. Whenever the server receives an authentication re-
quest, the token is decoded and verified by comparing the payload contents to
the information stored in the database. As we used Flask-RestX, our API routes
inherited from a Resource class. This allowed us to create an AuthResource
class which inherits from the normal Resource class but adds a method decor-
ator to all API routes made using the class. The method decorator performs
the token authentication described above by decoding the token in the client’s
cookie. If authentication succeeds, the API route is run as normal; on the other
hand, if authentication fails, a 401 response error is returned and the API func-
tion is not called. We found the advantage of this approach was that it made
implementing authenticated routes very easy for the rest of the team as all that
was required was using AuthResource instead of Resource.

4.2.4 Plan of Action

Each relationship has a single unique Plan of Action, which initially contains
no milestones. The database contains a table, plan_of_action, which stores each
milestone and has a foreign key, relationID, referencing the relationship table,
where each relationship entry acts as a plan of action. There are five different
operations regarding a Plan of Action. For each of these operations, the rela-
tionship must exist (a mentee cannot have a Plan of Action with a user who is

Final Report 16

not their mentor and vice versa). When a milestone is created its initial status
is âincompleteâ. A milestone can be marked as âcompleteâ or âincompleteâ.
A user can view all of their milestones with their relationship counterpart and
can remove milestones if they are no longer relevant regardless of status; unfor-
tunately, we did not have time to develop this feature as part of the prototype
however all required functionality is present in the backend. All five of these
operations can be performed by both the mentee and mentor of the relation-
ship as long as the relationship is valid. All Plan of Action API calls first check
that the logged-in user belongs to the Plan of Action’s relation before giving a
response. If there exists an entry in the relationship table with the given rela-
tionshipID and userID, then the relationship is valid.

Frontend
The Plan of Action is implemented as a reusable React functional component
that takes the array of milestones and a relation ID as props. The array of
milestones is rendered using the map() function and for each element, a List
Item is created with a Material UI checkbox component.

4.2.5 Meetings

For the meeting database model, we used a meeting table to store meeting data
with a foreign key to the relationship table. When creating a new meeting, the
API checks that the logged-in user is a mentee. We check the role of logged-in
users using the payload inside of their JWT token. Additionally, checks are
made to ensure that the meeting’s mentor and mentee are in a relation. If
this is not the case then the meeting request not be sent. Additional time con-
straints are checked to avoid invalid meetings from being created.
Cancelling a meeting is accessible from both a mentee and a mentor. If they do
not belong to the meeting being cancelled (checked using the relationshipID),
then the cancellation fails. Meetings can only be cancelled if their status is
âgoing-aheadâ or âpendingâ. If a request is âpendingâ, the âcancel_meetingâ
method is also used when rejecting a meeting. This is because the meeting is
already created in the table and it is easier to maintain the database by just stor-
ing it as a cancelled meeting. When a cancellation is successful, the database is

Final Report 17

updated to display âcancelledâ for the meeting. When testing this section, we
encountered âcompletedâ meetings that could be cancelled. Therefore, we ad-
ded constraints that this function would only run if the status is âgoing-aheadâ
or âpendingâ.
Accepting a meeting is only possible by the mentor and they must be a mem-
ber of the relationship within that meeting. The meeting must also have a
âpendingâ status. We update the database with the current time to get the
most accurate status of the meeting. If it is not pending, then the accepted
request will fail, otherwise the status of the meeting will update to âgoing-
aheadâ, meaning that the meeting has successfully been accepted. Completing
a meeting is, again, only accessible to a mentor of the same relationship as
the meeting contains. If a meeting is not currently in a ârunningâ state, then
it cannot be completed. When a meeting is completed, an optional feedback
string can be parsed to provide feedback to the mentee, regarding the results
of the meetingâs conclusion.
We discovered an issue where some meeting requests could be accepted after
the end time of a meeting. Therefore, whenever meetings are requested from
the database, an âupdateâ function is called. This function ensures that meet-
ings that have expired (meetings that have an end time 30 minutes earlier than
the current time) are updated to a âmissedâ status.

Frontend
Meetings on the frontend are implemented in two ways - on the main dash-
board and on a separate Meetings page for mentors. In both cases, each meet-
ing is built using a reusable Meeting Card component to ensure consistency
within the UI. For mentors, pending meetings contain the option to cancel a
meeting and running meetings contain a text input window to submit feed-
back. The Meetings page for mentors contains all meetings with all of their
mentees, ordered by status from currently running and upcoming, pending
and completed, to missed and cancelled. The list of meetings on the dashboard
shows all pending and past meetings for each individual mentee/mentor. We
also display a reminder for the next going ahead meeting with a particular
mentee/mentor on the dashboard, this allows a user to instantly find this in-
formation. This is important because the next scheduled meeting is likely to

Final Report 18

be the most important piece of information for a user.

4.2.6 Workshops

Workshops are created based on demand for a topic. Whenever a new topic is
created, the topic is added to the database in the workshop_demand table with
an initial demand of 0. The demand score is affected by two main factors: (1)
how many users have registered as mentees for that topic and (2) how long the
demand has existed for the topic. Whenever a workshop is run for a topic, its
demand resets to 0. We used a Python library called APScheduler[13] to run
a function every hour which increments the demand of all topics by a small
amount.
Every time the demand changes (either by a new user joining the system or by
the time increment), we run a check_demand function which iterates through
all demands in the database and checks if any have exceeded the demand
threshold. In the case that it has been exceeded, we use the messaging system
to send a workshop-creation invite to a random mentor who specialises in the
relevant topic. The mentor can either accept to create a workshop or reject
it in which case another random mentor is invited to create it instead. After
a workshop is created, every mentee who has that topic is invited. They are
only added to the user_workshop table with the workshop ID if they accept
the given invite. Workshops can only be created if a mentor is invited to create
one through the check_demand function.
A workshop can have one of four statuses: ’going-ahead’, ’cancelled’, ’run-
ning’, or ’completed’. When a mentor creates a workshop, the workshop
is inserted into the database with the status of âgoing-aheadâ. Whenever a
mentor cancels a specific workshop, its status is updated to âcancelledâ. The
update_workshop_status function is used to check and update statuses of all
workshops. A workshop is ârunningâ if the current time is past the start time
and before the end time and the status is not âcancelledâ. Once the workshop
status changes to this status, the demand for the topic is reset to 0. A work-
shop is âcompletedâ if the current time is past the end time and the status of
the workshop is not âcancelledâ.
A challenge we faced when implementing workshops was fine-tuning the de-

Final Report 19

mand values. We had to find the ideal demand threshold, new user demand
weighting and demand increase with time. In the end, we settled on a demand
threshold of 10, new user weighting of 1 and a time increase of 0.1 every day.

Frontend
There is a separate page for workshops accessible from the navigation bar. For
mentees, this page lists all upcoming workshops that they signed up for, and
for mentors, all the workshops they are currently running are displayed. Un-
fortunately, due to limited time and prioritisation of other features, workshops
were not fully implemented in the frontend with a lack of workshop creation
and sign up functionality as well as notifications to prompt mentors to create
workshops when there is high demand.

4.2.7 Matching

Implementation of the matching algorithm went smoothly and we did not en-
counter any challenges.

4.2.8 Admin

Three separate tables in the database are used to store the skills, topics and
business areas used in the system. All users can retrieve these attributes from
their relative table, however; only a user logged in as an admin can remove
and add skill, topic, and business area to and from the database. Mentees and
Mentors can submit feedback, which is stored in a table and the admins can
access all entries. The users role is checked using the authentication token be-
fore the operation takes place.

Frontend
There is a dedicated admin dashboard that displays and allows the addition of
skills, business areas and topics and also shows the feedback from users about
the app. Itâs design is even more minimalistic than the main interface this is
because it is a developer facing part of the system and will be used relatively

Final Report 20

infrequently this means it does not have to be as visually appealing and instead
focuses purely on functionality.

4.2.9 Database Implementation

To interface with the database we used the psycopg2[14] Python library. A
challenge we encountered was that backend developers were struggling to in-
teract with the database due to the complex nature of the psycopg2 library.
To solve this problem, we instructed our database engineer to write a sim-
plified, easy-to-use, interface for executing SQL and retrieving query results.
The interface uses a context manager to ensure that database connections gets
closed automatically and to remove the risk of developers forgetting to close it
themselves. After this simplified interface was implemented, we found it made
database interaction far easier for all members of the team.

Going into development the backend team had a clear view of what the data-
base schema should look like as we could refer to the database schema dia-
gram from our design document. However, we only added the entities to the
schema once they were required in case there were attributes we had missed
in the planning stage. This also helped prevent confusion amongst the team as
we were creating the tables relevant to the subsystems we were working on.
The schema for the system’s database can be seen below. Attributes marked
with a red arrow are references to the userID attribute in the user table.

Final Report 21

Figure 10: Entity-Relation diagram.

4.2.10 UI Design

The biggest challenge in UI design and frontend development was determining
which features to focus on in what order. We ended up overestimating the im-
portance of some smaller features, leading to spending too much time on their
development and not having time to implement other, bigger features. Syn-
chronising frontend and backend development to be able to fully implement
functionality was another difficulty we had to overcome, mainly by improv-
ing communication. This is why we initially used hard-coded data instead of
pulling data directly from the API.
Compared to the proposed design, no significant changes have been made to
the UI. We have updated the look of the login forms after deciding to use
Material UI components and we have changed the button style.

4.2.11 Communication with the API

To connect the web application to the API we had to allow the user to gen-
erate http requests. This was done using the axios javascript library. Axios

Final Report 22

is promise based which presented a challenge as it required understanding of
asynchronous functions in Javascript. We had to be careful not to try and use
the value wrapped in a promise until it had been fulfilled. The next stage was
to update the interface once the data was loaded in by the axios request. React
provides a number of hooks to allow us to update the information displayed
to the user. The useEffect hook allows you to perform side effects on compon-
ents; we initially used it to run functions on the first render of the page to load
data from the backend. Doing this means the page does not have to wait for
all the data to load before rendering. Later we discovered that we could pass
dependencies to a useEffect. This means the function will be run anytime the
dependency changed. This was useful for updating information for the cur-
rently selected mentor/mentee in the dashboard. The other hook we used was
useState which allows variables to be updated and components that use them
to rerender, with each state made up of a variable and setVariable function.
There were two main uses of this hook: to store the data fetched from calls to
the API and to store data inputted by the user in forms. The first required us to
parse the data from the API call and call the setVariable function to update the
variable. To implement the second we used the onchange function of inputs
components to continually set the state as the user changed the value of the
input. A button could then be used to call a function that read the current state
of the variables and perform the correct axios request.

5 Product Evaluation

5.1 Testing and Validation

The application was tested regularly to make sure Deutsche Bank was receiv-
ing a quality product and to ensure it fulfilled the requirements laid out in
the requirement document. Continuous testing was achieved using Github
actions[15], which ran pytest[16] unit tests and integration tests every time a
push was made to the repository on Github. Getting to grips with Github ac-
tions was a difficult process, but was worth it as it allowed the developers to
focus on the code and for the testers to focus on the testing. Not every require-

Final Report 23

ment was tested and the frontend and backend were not thoroughly endpoint
tested as we prioritised end-to-end testing on the API and ran out of time; this
could have been avoided if we started writing the tests earlier on in the devel-
opment of the app.

We wrote a CLI program called UserGenerator, which populates the system
with randomly generated data from a Python library called Faker[17]. It al-
lowed both the frontend and back end team to unit test their code manually
and locally as they wrote the different modules. The program can be used to
generate random users, random data for the users (such as their desired top-
ics to be mentored in), random relations, random meetings between mentors
and mentees, and random workshops. Using User Generator for testing was
not as rigorous as writing out actual tests, but it allowed developers to gener-
ate data to create test scenarios in which they knew the desired outcome, and
see if they got that outcome from the app, which is better than nothing. We
found that UserGenerator played a crucial role in our ability to rapidly test
app functionality. Rather than having to manually register accounts every time
we built a new version of the website, UserGenerator could add hundreds in a
few seconds.

Figure 11: User Generator command line interface

Pytest was a good choice for testing the backend as it worked well with Github
actions and made writing tests easy. To run pytest tests using Github actions,
we only had to run the command âpytestâ in the console, and pytest would

Final Report 24

run all the tests by itself, which made setting up the continuous testing and
writing the tests a lot simpler. Using Github actions to automatically run tests
whenever a push was made allowed us to indirectly regression test our applic-
ation too, as if a push to the repository broke a previously working feature,
actions would have picked up on it and notified us which module was no
longer working, so we could go and fix the problem.

Figure 12: Github actions automatically running tests

Figure 13: Pytest test log

Due to time constraints, the testing part of development wasn’t as thorough as
it could’ve been. Had we started earlier, we would’ve used the extra time to

Final Report 25

write endpoint tests for the database and the frontend, user acceptance test the
application, test the responsiveness of the application, more thoroughly test
our backend, test whether the application works as intended on a wide variety
of browsers and test every requirement.

5.2 User Interface Evaluation

We have decided to use Neilsenâs Usability Heuristics [18] to evaluate our user
interface. This is because they are probably the most-used usability heuristics
for user interface design[19].

5.2.1 Visibility of System Status

The design should always keep users informed about what is going on. If
erroneous data has been entered by the user, the system should display that
a problem has occurred as well as a reason for the problem occurring. If no
error message was displayed the user might think the system is working in-
correctly or taking a long time to process a user’s interaction. This has been
implemented on the register page if a user enters non-matching passwords or
an invalid email address then the user is notified as to why their request was
not accepted.

Figure 14: Example of visibility of system status.

Final Report 26

However this principle was not implemented system wide, when an API call
fails there is no explicit indication to the user as to what has happened. We
did not implement this as it was not considered core functionality during our
requirements analysis. The API does return messages and make use of error
codes when calls fail, this could be used in the future to implement displaying
the errors to the user.

5.2.2 Match between system and real-world

The design should use words, phrases and concepts familiar to the user.
The icons used on each page of the website are commonly used such as a
plus symbol for adding goals and mentors, a gear symbol for settings and a
calendar symbol to schedule meetings.

Figure 15: Gear symbol for settings

Figure 16: Gear symbol for settings

Additionally the status of a meeting is indicated using intuitive phrases in-
cluding missed, running, pending and going ahead that map to how the user
would describe the status of the meeting in the real world.

Final Report 27

Figure 17: An example of a commonly used phrase

Overall,x our system matches up well against this heuristic making the system
suitable for non-technical users as it is easy to navigate and interpret requiring
no specific prior knowledge or understanding.

5.2.3 User control and freedom

The system should have a clear way of exiting the current interaction. A user is
able to use back arrows in their browser to cancel any navigation actions.When
adding elements such as scheduling meetings, adding plans of action or send-
ing a message this is done through a pop up modal that can be cancelled at
any time by clicking outside the area of modal.

Figure 18: Pop up modal

However, we have not implemented a method for undoing these actions once
confirmed, plans of action, meetings and messages cannot be edited or deleted.

Final Report 28

This is a problem as typos when inputting information cannot be rectified.
Additionally a mentee is unable to leave a relationship with a mentor, if they
accidentally add a mentor their dashboard will become cluttered and make
interacting with their actual mentors more difficult. These features were not
implemented as they were not explicitly stated in the requirements or design
and were considered of a lower priority compared to other features. All of
these methods are available on the API so could be implemented if the project
moves beyond a prototype.

5.2.4 Consistency and standards

Users should not have to wonder whether different words, situations, or ac-
tions mean the same thing by ensuring both internal and external consistency
is maintained. Internal consistency refers to the consistency within our system
for example, the order of text fields is the same on the login and register page.
The items in the navigation bar remain in the same place throughout the web-
site and the description of the current page is always located on the red bar
below this contributing to a consistent layout. Additionally there is a consist-
ent colour scheme throughout the interface instantly indicating to the user that
they have not navigated away from our interface. We also use the same terms
across the system to refer to entities, such as mentor, mentee, workshops, meet-
ings and messages; this means the user is clear as to what they are interacting
with in the system.
External consistency refers to established conventions in the industry. Our
website logo, positioned in the top left, links back to the homepage and in the
top right corner the users profile picture is a link to a user menu that shows
notifications and provides access to the settings page and logout feature, which
are both common design patterns in web applications.

Final Report 29

Figure 19: Profile picture can open the user menu

5.2.5 Error prevention

Prevent erroneous data from being accepted by the system. The system’s sign-
up page has a password confirmation to ensure the user has not made an
accidental mistake in their entry. Some data fields throughout the program
are not accepted if left blank. For example, all fields on the register page
are required to advance. This prevents the user from unintentionally missing
fields. There are a few places where the users can input data that results in an
error when an API call is made using this data. For example there is no date
validation ensuring the start date is before the end date and that meeting is
being scheduled in the future.

5.2.6 Recognition rather than recall

Minimise the userâs memory load by making elements, actions, and options
visible. Interfaces that promote recognition reduce the amount of cognitive ef-
fort from the user. Our system achieves this by labelling fields and menu items
and providing icons and colour to increase recognition time.

Final Report 30

Figure 20: Inputs labels and default date values on scheduling form

Some fields have default input such as the start and end time of meetings,
this helps the user recognise the correct type of data to enter without having
to recall the correct format every time they create a meeting. Furthermore
we have implemented tooltips in a number of places to provide further detail
about the functions of buttons, such as the schedule meeting and rate mentor
buttons.

Figure 21: Tooltip helps with recognition

5.2.7 Flexibility and efficiency of use

Short cuts should be available to speed up the interaction for experienced users.
We were not able to add shortcuts to our system however all core parts of the
program can be instantly accessed from all pages. Without product deploy-
ment and the subsequent creation of experienced users, it is hard to know
what shortcuts would be the most useful. Users can request the shortcuts they
would like to see using the feedback form on the settings page, which could
then be implemented in future updates.

Final Report 31

5.2.8 Aesthetic and minimalist design

Interfaces should not contain information that is irrelevant or rarely needed.
The system maintains an aesthetic throughout with options suitably spaced
apart, no colour conflicts and no blank spaces. Small components, such as
buttons, use minimalist on-hover animation style and eye-catching colours to
attract usersâ attention but not cause too much distraction.

Figure 22: Example of well spaced component

On each page there is one explicit way to navigate to a page, this eliminates re-
dundancy therefore contributing to a minimalist design. Additionally we have
attempted to only display information if it is needed, for example when dis-
playing meetings the feedback box is only visible if the meeting is completed
as other meetings do not have any feedback associated with them.

Figure 23: Feedback box is only displayed for completed meeting.

Final Report 32

Furthermore a user’s bio is not visible on the dashboard and can instead only
be seen on the profile page, this is because this information is not relevant to
the purpose of the dashboard, which is to provide an overview of the relation-
ship between a mentor and mentee. However there are some modifications we
could make for example on the dashboard there is a complete backlog of all
meetings including missed meetings as more and more meetings happen this
could become overcrowded and distract from the more important meetings
that have recently happened or are due to happen. A similar problem occurs
when a user is connected with excessive amounts of mentors/mentees making
it difficult for users to find a specific person to navigate to, however this is not
a design issue as the solution is to cap the number of mentors/mentees a user
can have and also allow them to end a relationship with a mentor/mentee.
Overall our interface adheres well to this heuristic and the simplistic design
gives room for expansion with new features.

5.2.9 Help and Documentation

The system should provide documentation to help users understand how to
complete their tasks. As our system is a prototype we did not deem it neces-
sary to include documentation on how to use the program within the system.
However, our minimalistic and intuitive design should mean the need for in-
structions is minimal.

5.3 Improvements and Extra Features

The application feedback forms submitted by users may sometimes suggest
extra features they would like to see in the system. So after deployment, the
admins will have a greater understanding as to what features the majority of
users would like to see. However, we had some ideas ourselves of some fea-
tures we didn’t implement in initial development but felt would benefit the
system. Group Chats: A group messaging service would be highly advant-
ageous for users participating in a workshop. Messages could be sent before
the workshop to inform attendees of location changes as well as the required
knowledge to comprehend the content of the workshop. Attendees would then

Final Report 33

be able to discuss the contents of the workshop further increasing their under-
standing of the topic.
In-application online meetings/workshops: Online meetings are becoming
increasingly common in the workplace with more employees working from
home. When creating a meeting a user will have the option to select âonline
meetingâ, which will create a meeting as normal but when the meeting starts
the user will be prompted to join an audio or video call on the system. These
meetings could also have the option to be recorded so the mentee can easily
recall the actions that took place in a meeting. This feature could be imple-
mented via the use of an external online video conferencing software such as
Microsoft Teams or by the development of tailor-made software that can run
the meeting within the web application. This will ensure the mentoring pro-
cess can continue in unforeseen circumstances where an attendee is not able to
make the in-person meeting.
Mobile Application: In our requirements analysis document we explained
that a mobile application will not be implemented in the development of the
prototype. However, as the number of users on the system increases the num-
ber of these users that will not always have access to a desktop also increases.
A mobile application would increase efficiency for mobile users as they can
access features whilst offline as well as offer easier means of sending notifica-
tions.

6 Development Process Evaluation

6.1 Methodology

Our plan was to follow the waterfall methodology during development, how-
ever, due to our relative lack of experience in software development and spe-
cific technologies we were unable to anticipate every consideration during the
design phase. Therefore we had to remain flexible and adapt the design as our
understanding and experience increased. However, the plan based approach
did allow us to work from a clear set of requirements and use the design doc-
ument to structure the development and mitigate the risk of scope creep.

Final Report 34

6.2 Planning and Management

We split into two groups, those working on the backend and those working
on the frontend. We thought it would be advantageous to apply the majority
of our group members to the backend to avoid bottlenecks where the fron-
tend team are waiting for services required to make progress. Towards the
end of the project, we found development to be slow due to only committing
a small number of team members to the frontend. We further split the system
into multiple subsystems, allowing members of each team to work in parallel
increasing our workflow. The separation into subsystems also made testing
easier as each member could test their own part without relying on the rest of
the system, it also helped us find errors later on in the development process as
we could identify the subsystem the error was occurring in. We assigned most
subsystems to team members but left a few unassigned to be completed by
members who finish their tasks first. This was because we did not know how
long each subsystem was going to take so it meant all members were occupied
even after they finished their original tasks.

Although we split the subsystems evenly between members, the lack of inter-
mediary deadlines meant that some services were not ready for the frontend
team when required. This meant the frontend team had less time to complete
their tasks before the final deadline, which led to a stressful environment.

6.3 Communication

We used Discord[20], an online messaging platform, to help inform which
members of the group were focusing on what part of the project. Online group
meetings allowed members of the team to meet up more regularly than in per-
son and especially helped during the covid-19 pandemic when members of the
team had to self isolate. Nevertheless, in-person meetings were also necessary
to ensure members of the group were meeting deadlines.
The group was split into the two main segments of the project development:
Frontend and Backend, which were further split into subsystems. These two
teams needed to communicate with each other effectively in order for the pro-

Final Report 35

ject to be functional. Small meetings were held between team members after
the completion of a subsystem to fix errors and test functionality. As certain
subsystems were similar, group meetings led to efficient error solving as some
members had already encountered these problems. We used the Microsoft Live
Share extension on Visual Studio Code enabling collaborative editing, which
ensured high productivity whilst debugging. Using the Live Share extension
also aided our version control during debugging sessions as everyone was
editing in the same workspace.

6.4 Conclusion

Our process of development, for the most part, had a positive impact on the
final product. Our plan made sure each team member always had a task to
complete, however without preliminary deadlines some parts of the system
were not ready when expected by other team members. This was mitigated
by quick communication amongst team members to prioritise development on
the service required.

Although development became more stressful as the deadline approached
every member of the team approached the project enthusiastically and re-
mained respectful of other team members and their contributions.

Final Report 36

References

[1] “jwt.io.” https://jwt.io/. Accessed: 04-02-2022.

[2] “Docker.” https://www.docker.com. Accessed: 11-03-2022.

[3] “git.” https://git-scm.com/. Accessed: 25-02-2022.

[4] “Github.” https://github.com. Accessed: 04-02-2022.

[5] “React js.” https://reactjs.org. Accessed: 27-02-2022.

[6] “Typescript documentation.” https://www.typescriptlang.org/docs/.
Accessed: 04-02-2022.

[7] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: Quantifying detect-
able bugs in javascript,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pp. 758–769, 2017.

[8] “Tailwindcss.” https://tailwindcss.com. Accessed: 2010-09-30.

[9] “Flask blueprint.” https://flask.palletsprojects.com/en/2.0.x/
blueprints/. Accessed: 11-03-2022.

[10] “Flask-restful.” https://flask-restful.readthedocs.io/en/latest/.
Accessed: 11-03-2022.

[11] “Flask-restx.” https://flask-restx.readthedocs.io/en/latest/. Ac-
cessed: 11-03-2022.

[12] “swagger.io.” https://swagger.io. Accessed: 25-02-2022.

[13] “Apscheduler.” https://pypi.org/project/APScheduler/. Accessed: 11-
03-2022.

[14] “psycopg2.” https://pypi.org/project/psycopg2/. Accessed: 11-03-
2022.

[15] “Github actions.” https://github.com/features/actions. Accessed: 04-
02-2022.

https://jwt.io/
https://www.docker.com
https://git-scm.com/
https://github.com
https://reactjs.org
https://www.typescriptlang.org/docs/
https://tailwindcss.com
https://flask.palletsprojects.com/en/2.0.x/blueprints/
https://flask.palletsprojects.com/en/2.0.x/blueprints/
https://flask-restful.readthedocs.io/en/latest/
https://flask-restx.readthedocs.io/en/latest/
https://swagger.io
https://pypi.org/project/APScheduler/
https://pypi.org/project/psycopg2/
https://github.com/features/actions

Final Report 37

[16] “pytest.” https://docs.pytest.org/en/7.0.x/. Accessed: 04-02-2022.

[17] “Faker.” https://faker.readthedocs.io/en/master/. Accessed: 11-03-
2022.

[18] N. Jakob, Microservice Architecture: Aligning Principles, Practices, and Cul-
ture. 1994.

[19] “Heuristic evaluation.” https://en.wikipedia.org/wiki/Heuristic_
evaluation. Accessed: 11-03-2022.

[20] “Discord.” https://discord.com. Accessed: 11-03-2022.

https://docs.pytest.org/en/7.0.x/
https://faker.readthedocs.io/en/master/
https://en.wikipedia.org/wiki/Heuristic_evaluation
https://en.wikipedia.org/wiki/Heuristic_evaluation
https://discord.com

	Introduction
	System Overview
	Accounts
	Relationships (Mentor-Mentee)
	Meetings
	Workshops
	Plan of Action
	Messages
	Application Feedback
	Administrator Functionality

	Requirements Modification
	Modified Requirements
	Dropped Requirements

	Development Discussion
	Development Tools
	Containerisation with Docker
	Github
	React TypeScript
	Tailwind CSS
	Material UI

	Development Progression
	Factory Design Pattern
	REST API
	Authentication
	Plan of Action
	Meetings
	Workshops
	Matching
	Admin
	Database Implementation
	UI Design
	Communication with the API

	Product Evaluation
	Testing and Validation
	User Interface Evaluation
	Visibility of System Status
	Match between system and real-world
	User control and freedom
	Consistency and standards
	Error prevention
	Recognition rather than recall
	Flexibility and efficiency of use
	Aesthetic and minimalist design
	Help and Documentation

	Improvements and Extra Features

	Development Process Evaluation
	Methodology
	Planning and Management
	Communication
	Conclusion

